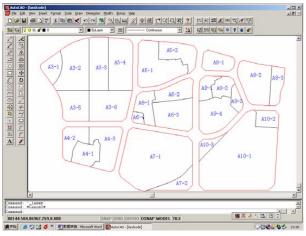
实验四:空间数据库的建立

一、实验类型

验证性。

二、实验目的与要求

- 1、目的: 掌握 GIS 空间数据库建立的基本方法。
- 2、要求: 2 课时完成。


三、实验材料与仪器设备

计算机。

四、实验内容与步骤

息系统实验指导书上生继强 (一) 新建 Geodatabase

某地区有土地使用规划地图,要求输入 ArcGIS 数据库,原始图形是 AutoCAD 的 DWG 文件, 用 Polyline 和 Line 图形实体绘制地块边界,用 Text 实体注记的各地块编码(见图 4-1)。

用 AutoCAD 显示 landcode.dwg

启动 ArcCatalog, 在左侧的目录中展开 D:\gis_ex09\ex23, 用右键点击 ex23 后选用菜单 New / Personal Geodatabase,新建一个 Geodatabase,取名为 Parcel23,鼠标右键点击 Geodatabase Parcel23, 选用菜单 New/Feature Dataset…,出现 Feature Dataset 对话框,在 Name 栏中输入 Feature Dataset 的 名称 A1。在对话框下方单击 Edit…按钮,进入空间参照 Spatial Reference 属性对话框,本练习使 用原始数据 landcode.dwg 的坐标系,单击 Import…按钮,在 D:\gis_ex09\ex23 目录下, 2个 landcode.dwg 数据源, 选蓝色的一种, 单击 Add 按钮, 再按"确定" 键, 原始数据的坐标系统、 X/Y 空间域的设定被读入。再按对话框下方 Edit···按钮,选定 X/Y Domain 标签,可以看到相应的 数值,如果有特殊需要,可以在此基础上调整 X/Y 空间域的值(本练习可不调整)。再选标签 Coordinate System, 点击按钮 Select…,选择该要素集的投影坐标系,选择 Projected Coordinate System/ Gauss Kruger / Beijing 1954 / Beijing 1954 3 Degree GK CM 120E.prj, 按 Add 键, 坐标系的设定,再按"确定"键,回到 Feature Dataset 对话框,按 OK 键,要素集(Feature Dataset) A1 新建完毕,可以看到 ArcCatalog 对话框的右侧, 出现 A1 Personal Geodatabase Feature Dataset。

(二) AutoCAD 的线实体转换成线要素

在 ArcCatalog 左侧目录树中选择 Geodatabase D:\gis_ex09\ex23\Parcel23, 鼠标 右键选用菜单Import / Feature Class(Single)…, 出现 Feature Class to Feature Class (要素类到要素类) 对话框:

Input features

D:\gis_ex09\ex23\landcode.dwg\Polyline 单击后面的图标,在路径 D:\gis_ex09\ex29 下,选择landcode.dwg,双击鼠标,展开 dwg 中的要素,选择 Polyline,单击 Add 键添加。

Output Location

D:\gis_ex09\ex23\parcel23.mdb\A1 自动产生默认路径,无需修改

Output Feature Class Name:

Parcel_Polyline 键盘输入转换后的要素类名称

Expression (optional) 无须输入

Field name(optional) 选择转换的字段。

在 CAD 文件转换成 Feature Class 的过程中立可以将 CAD 实体的相关特征,如图层名 Layer、厚度 Thickness、高度 Elevation、预告 Color 等,转低成 Feature Class 的属性表中的字段。对话框显示了转换前后的字段情况。

其中,Field Name 是转换前的 CAD 实体的特性,New Field Name 表示转换 之后的要素属性 表的字段名,用户可以直接修改。Visible 表示该字段是否参加转 换,可下拉式选择 True 或 False。True 表示该属性不删除,参加转换,False 表示该属性删除,不转换。本练习不需使用原有的 CAD 实体的特征,所有的字段均设为 False,不参与转换。

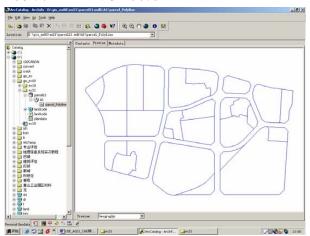


图 4-2 转换后的 Feature Class Parcel_Polyline

对话框中后面四个选项,均采用默认值,不做修改。选 OK 键确认。系统出现 Feature Class to Feature Class 计算框,经过一定时间的计算后显示 Completed,完成转换,单击 Close 关闭 Feature Class to Feature Class 计算框。

原始 CAD 的线实体转换成要素类 parcel_Polyline。用户使用 ArcCatalog 中的预览 Preview 选项,可以看到转换后的线要素类 Parcel_Polyline(见图 4-2)。新建的线要素类属性表中有 OBJECTID、Shape、Shape_Length 三项字段。其中,Shape_Length 是转换后自动产生的线要素长度。

(三) CAD 的文字实体转换成点要素

在 ArcCatalog 左侧目录树中选择 Geodatabase D:\gis_ex09\ex23\ Parcel23\A1, 右键选用菜单Import / Feature Class(Single)…, 出现 feature Class to Feature Class (要素类到要素类)对话框:

Input features

D:\gis_ex09\ex23\landcode.dwg\Annoatio 单击后面的图标,在路径 D:\gis_ex09\ex23 下,选择 landcode.dwg,双击鼠标,展开 dwg 中的要素,选择 Annoation(文字), 单击 Add 添加。

Output Location:

 $D:\gis_ex09\ex23\parcel23.mdb\A1$

自动产生默认路径, 无需修改

Output Feature Class Name:

Parcel_Label

键盘输入转换后的要素类名称

Expression (optional)

无须输入

Field name(optional)

选择转换的字段

在对话框中将 Visible 一栏下,将 Text_项保留为 True 参加转换,其余的各项字段均设置为 False,不参加转换。对话框中后面四个选项,均采用默认值,不做修改。单击 OK 键确认。系统出现 Feature Class to Feature Class 计算框,经过一 定时间的计算后显示 Completed,完成转换,单击 Close 关闭 Feature Class to Feature Class 计算框。原始 CAD 数据的文字实体注记 Text 转化完成新的点要素类(Point Feature Class)Parcel_Label、使用 ArcCatalog 中的预览 Preview 选项,可以看到转换后 的点要素类图形,从及新建的点要素类属性表中有 OBJECTID、SHAPE、Text_ 三项字段(见图 4-3)。

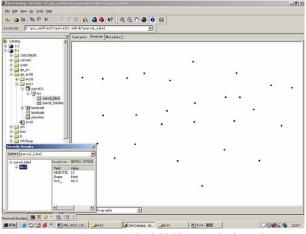


图 4-3 CAD 的 Text 实体转换成要素类,含 Text 属性

(四) 使用线要素的拓扑关系, 检查数据质量

在 ArcCatalog 目录树中选择 Geodatabase D:\gis_ex09\ex23\ Parcel23 下要素集 A1,用鼠标右键选用菜单 New / Topology,按"下一步"键,进入拓扑类设定:

Enter a name for your topology: A1_Topology1

拓扑要素取名为 A1_Topology1

Enter a Cluster Tolerance: 0.001 meter

设置限差值为 0.001 米

按"下一步"建继续:

Select the feature class that will participate in the topology:

Parcel_Label

√ Parcel_Polyline

钩选线要素类参与拓扑关系

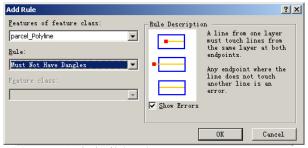


图 4-4 添加拓扑规则 Must not Have Dangles

按"下一步"键进入 Rank 设置,本练习中无须设置此项,采用默认值,再选"下一步"键设置 拓扑规则。单击 Add Rule…,为线要素类 Parcel_Polyline 添加拓扑规则 Must not Have Dangles(参考图 4-4)。勾选 Show Errors,按"下一步"键,可看到有关拓扑的设置,如确认无误,按"完成"键继续。系统计算生成拓扑关系,提示:

The new topology has been created, would you like to validate it?

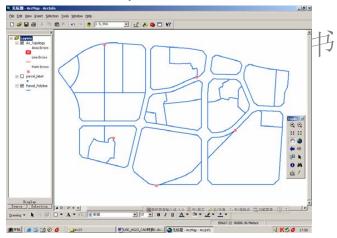
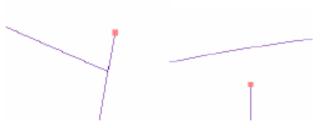



图 4-5 在 ArcMap 中察看拓扑错误

选择"是(Y)",系统验证拓扑关系,生成拓扑类 A1_Topology1。用 ArcCatalog 的 Preview 窗口可以看到 5 个红色的小方块,提示有 5 处拓扑错误(图 4-5)。数据转换后有质量问题,是很常见的,如:(1) CAD 原始数据中,线和线之间没有严格按捕捉方式输入;(2) AutoCAD 和 ArcGIS 的坐标精度控制不一致,即使在 CAD 中严格用捕捉方式输入,转换后也会出现拓扑错误,(3) 是建立拓扑关系时 限差值(Cluster Tolerance)取得太小,差错检验的要求过高,增加了出错的机会,当然 Cluster Tolerance 设得太大,会影响要素的坐标精度(本次练习设成 0.001 米,在实际使用中可能要求过高了)。利用拓扑关系可有效检验数据质量。

(五)修正几何差错,重建拓扑

启动 ArcMap,建立一个新的地图文档,加载(Geodatabase)Parcel23 下 Dataset A1 的要素类Parcel_Polyline、Parcel_Label、A1_Topology1。进入 Data Frame Properties(特征设置)对话框,点击 General 标签,将 Map Units 和 Display Units 均改为 Meters。使用 ArcMap 的编辑功能,修改要素类 Parcel_Polyline 的错误,其中有线过短(Under Shoot)的问题,也有过长(Over Shoot)的问题(见图 4-5,4-6)。对过短的问题,使用高级编辑工具条上的 Extend 工具,过长的问题使用高级编辑工具条上的 Trim 工具,操作方法参见第 20 章,具体过程由练习者自己控制。

线过长 (Over Shoot)

线过短(Under Shoot)

图 4-6 最常见的线和线交接错误

完成修改,结束编辑状态,保存修改。启动 ArcCatalog,在目录树中选择 Geodatabase D:\gis_ex09\ex23\ Parcel23 下的要素集 Geodataset A1,再选择其中的 拓扑类 A1_Topology1,用鼠标的右键选用菜单 Topology / Validate,重新验证拓扑 关系,系统提示: The topology has been validated。使用 ArcCatalog 的 Preview 标 签,查看拓扑类 A1_Topology1,保证没有拓扑错误,如果还有,再到 ArcMap 中 编辑,再检查。直到表示错误的红点没有为止。

(六) 用线要素生成多边形

在 ArcCatalog 目录树中选择 Geodatabase D:\gis_ex09\ex23\Parcel23\Fm要素集 A1。用鼠标右键选择单 New / Polygon Feature Class From Lines 对话框:

Enter a name for the feature class: Parcel_Polygon / 键盘输入多边形要素类名称

Enter a Cluster tolerance: 0.001 meter

键盘输入限差值

Select the feature classes that will contribute in creating the polygons:

√ Parcel_Polyline

勾选参与生成多

边形的线要素类

Select a point feature class to establish attributes for the polygon features:

Parcel Label

下拉选择点要素类,为新建的多边形要素类提供编号属性

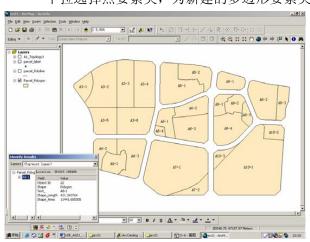


图 4-7 多边形 Parcel_Polygon 带有点要素 Parcel_Label 的属性

按 OK 键确认,系统根据线要素 Parcel_Polyline 生成多边形要素 Parcel_Polygon 的边界。多边形的面积、周长均自动产生,而每个多边形的编号属性 Text_却来自点要素类 Parcel_Label。由于点和多边形在空间位置上事先存在一对一的几何关系,如果原始 CAD 图形中,一个地块多边形内肯定有一个(只 有一个)Text 实体,Geodatabase 中不会产生差错。读者还可以进一步比较点、线、面三种要素的属性项。选择菜单 File / Exit,退出 ArcCatalog。

(七)连接外部表

进入 ArcMap,加载选择 Geodatabase D:\gis_ex09\ex23\Parcel23 下要素集 A1 中的新建多边形要素类 Parcel_Polygon。可以看到每一地块多边形已经有了面积、 周长和用地编码等属性,下一步用连接(Join)外部表的方法,给地块多边形增 加其他属性,有关属性已经输入 D:\gis_ex09\ex23\Plandata.dbf 文件。在 ArcMap 中选择图层 Parcel_Polygon,用鼠标右键选择 Joins and Relates / Join···,弹出 Join

Data 对话框:

What do you want to join to: Join attributes from a table 下拉选择和某个表建立连接

- 1. Choose the field in this layer that the join will take place: Text_ 下拉选择连接字段名
- 2. Choose the table to join to this layer, or load a table: Plandata 利用按钮 **当**将 D:\gis_ex09\ex23\ Plandata.dbf 读入
 - 3. Choose the field in the table to base the join only: CODE 下拉选择被连接表的字段名

按 OK 键继续,提问是否要加索引, 回答"No"。可以看到,地块多边形多了 LANDUSE、FAR、DENSITY、GREEN、HEIGHT、REMARK 等属性。 目前的连接是临时的,其他地图文档调用时该要素类,还要再作连接。继续在 ArcMap 中选择图层 Parcel_Polygon,用鼠标右键选用菜单Data / Export Data…, 出现 Export Data 对话框,不要修改对话框中的其他选项,只修改最后一项:Output Shapefile or feature class?,打开后边的图标

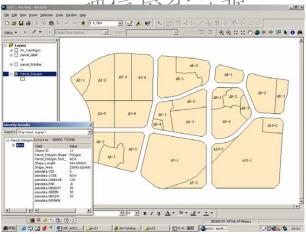


图 4-8 连接外部属性表

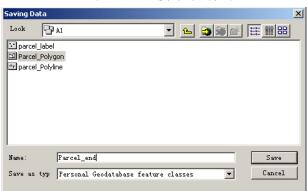


图 4-9 连接后的要素输出为新的 Feature Class

下拉选择 Geodatabase dataset 及要素类名称

Name: Parcel_end 键盘输入要素类名称

Look: A1

Save as type: Personal Geodatabase feature classes 下拉选择数据类型

按 Save 键,数据保存到 Geodatabase D:\gis_ex09\ex23\Parcel23 中的要素集 Geodataset A1下,为多边形要素类 Parcel_end,这一多边形要素类有了地块的全 部属性。提示是否需要将输出的数据直接添加进入,选择"是(Y)",在 ArcMap 中再加载 Parcel_end,打开图层属性表,可以看到,属性字段已经连成一体。

数据转换工作全部完成后,如果没有必要保留处理过程数据,应该到 ArcCatalog 中删除。为了不影响后续、他人的练习,退出 ArcMap 时,也不应保 留对地图文档的改动。

(八) 关于本实验的说明

CAD 在其他行业应用广泛,将 CAD 数据转换进入 Geodatabase,是一种常用的 数据获取、交换途径。ArcGIS 可转换 AutoCAD 的 DWG 和 DXF 文件,Intergraph / MicroStation 的 DGN 文件。

表 4-1 AutoCAD Entity 和 ArcGIS Feature Class 之间的关系

AutoCAD Entity(实体类型)	Geodatabase Feature Class(要素类)	
Line, Arc, Circle, Polyline, Solid,	Line,线要素类	
Trace, 3DFace		
Point, Shape, Block 的插入点	Point,点要素类	
闭合的 Polyline,Circle, Solid, 3Dface,	Polygon,多边形要素类	设县书
Text	Point,点要素类。依实验力	17

ArcGIS 转换 CAD 文件,并不是根据图层读取、而是按实体类型(点、线、多边形、文字注记)读取,每一种 CAD 的实体可以被转换为一个要素类。转换时,可以选择是否将 CAD 原有的图层、颜色、高程等特征也转换到要素属性表中。例 如:如果 CAD 中某图层上图形对 Geodatabase 是多余的,就可以图层名作为属性转 换进来,再用属性查询、选择的办法,将符合原来图层名的要素选出来,成批删 除。AutoCAD 不同实体与 Geodatabase 的要素对应关系如表 4-1 所示。

CAD 图形数据转换进入 Geodatabase,一般直接使用原来的坐标,但是空间参照的有关参数应由用户指定。

在 AutoCAD 中,闭合的 Polyline 可以直接转换为多边形要素类。但是,在 AutoCAD 中生成闭合 Polyline 并不方便,尤其是当边界较为复杂、带有弧段,难 以产生闭合 Polyline。为此,本练习没有直接在 AutoCAD 中生成闭合 Polyline, 再转换为 Geodatabase 多边形要素类的方法,而是先将 CAD 的多边形边界转换为 线要素,利用拓扑关系查错、改错,再由线要素产生多边形,这一方法容易保证 数据的质量。

在 AutoCAD 中,往往将多边形的编号直接用 Text 实体标注,将 Text 实体转换为点要素后再进入多边形的属性表也是一种实用的途径。为此,要求在 AutoCAD 中输入 Text 实体时,必须将 Text 的标注点(Start Point)落在对应多边 形的内部,在 ArcGIS 中,参与多边形要素类的建立时,就可直接得到一对一的 逻辑关系,不必在 ArcMap 中逐个手工输入多边形的编号,这种方法可提高大批量数据输入的效率。本练习中线要素、点要素的转换方法也可用在其他场合。

五、实验报告内容及要求

实验完成后,根据实验内容撰写实验报告。实验报告内容如下: (1)实验名称; (2)实验目的; (3)实验的方法与主要步骤; (4)实验结果(将实验界面抓屏,粘贴到实验报告中)。实验报告以2页为宜(也可以不受篇幅限制)。